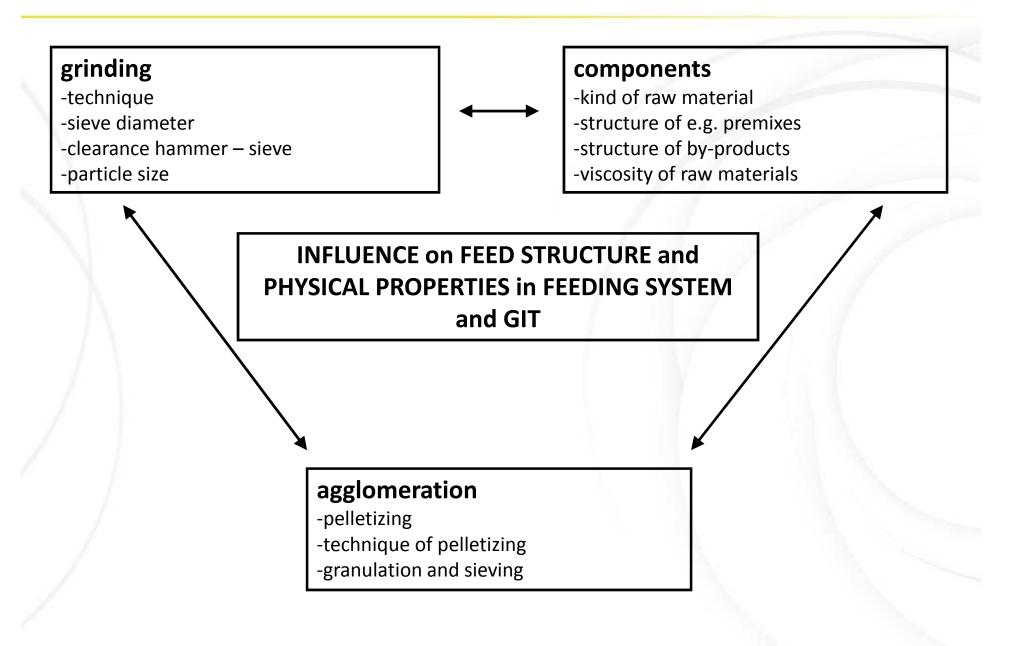


West Bengal – Poultry Mela 18th Feb 2016 Kolkatta

Hydrothermal refinement of carbohydrate-rich feedstuffs for use in poultry diets – actual results and experiences

1. Overview of technical refinement methods


2. Technical refinement of grain

3. Technical refinement of raw materials high in fibre and structured carbohydrates

4. Take-Home Message

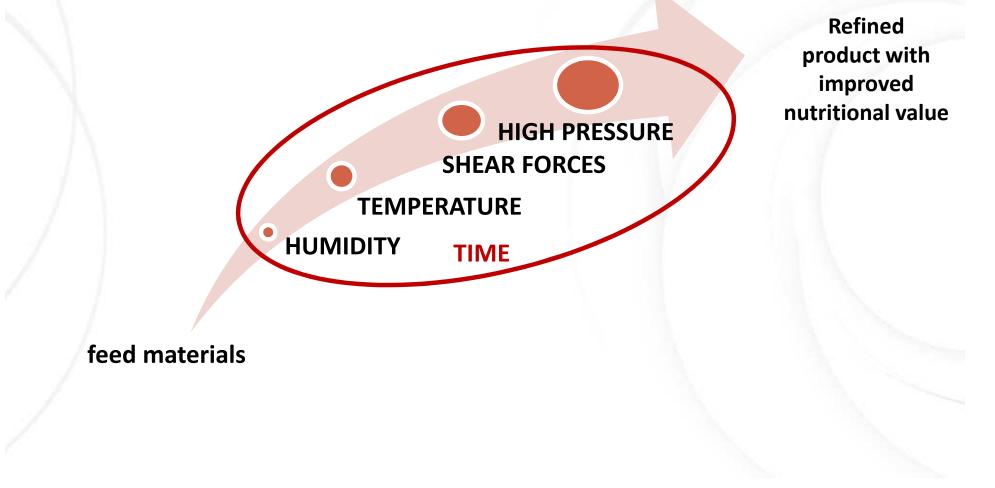
Influence on physical properties of feed

Technical refinement – overview

✓ Grinding, pelletizing

✓ Toasting

- Extrusion, Expansion
- Extrusion, Expansion


✓ Extrusion, Expansion

- ➔ hygiene, technical behaviour
 > different new materials
- ➔ different raw materials
- → lowering ANF; digestibility?
 → soybean seed; SBM
- Iowering ANF; maintaining digestibility
 soybean and other legume seed; by-products
- ➔ physical properties in GIT for better digestion and "health in GIT"
- → grain / starch-rich raw material
- → fermentability / physical behaviour in GIT
- ➔ fiber-rich raw materials like SFM, RSM, soybean hulls

Expansion + Extrusion combined: opticon®

Patented technology for processing of feed materials with final goal to change their properties (nutrition-wise and physical).

Expanding + Extrusion combined: opticon®

Principle of "moist extrusion"

- Combined advantages of a moist extrusion like in a HTST extruder (intensive material transformation), and of an expander (only product cooling, no drying)
- in
- Energy transfer via steam, mechanical energy, pressure; expansion of the material
- Characteristic changes in the matrix structure of the products
- Modification of the starch granula as well, as the structural carbohydrates like NDF / ADF right down into molecular range
- Enlargement of the starch granula surface and far-reaching desintegration of the semi-cristalline and cristalline structure of the amlyopectin and amylose resp. of the cristalline carbohydrate structure in NDF / ADF-rich raw materials
 - Significant reduction of ANF's

technical refinement of soybeans

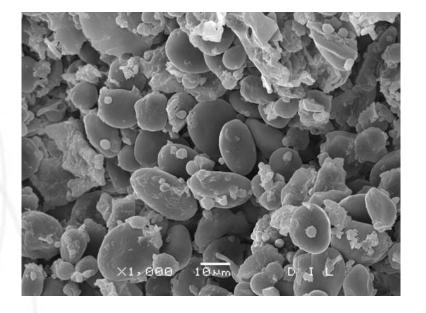
Control on urease activity (Kresolred-test)

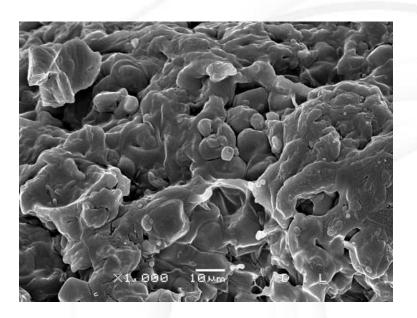
technical refinement of soybeans

Concentration of ANF's and in vitro digestibility of protein

	untreated	opticon [®] refined
dry matter, %	90,6	90,3
protein, %	35,7	35,9
PDI	91	14
Urease activity, %	80	<1
TIU/mg TS	32	7,4
in vitro-dg protein 3 h, %	26,9	56,5
in vitro-dg protein 24 h, %	37,9	71,1

technical refinement of grain




Example: mixture of 50 % wheat, 25 % barley and 25 % corn

Influence of refinement on the structure of starch

untreated mixture

opticon[®] refined

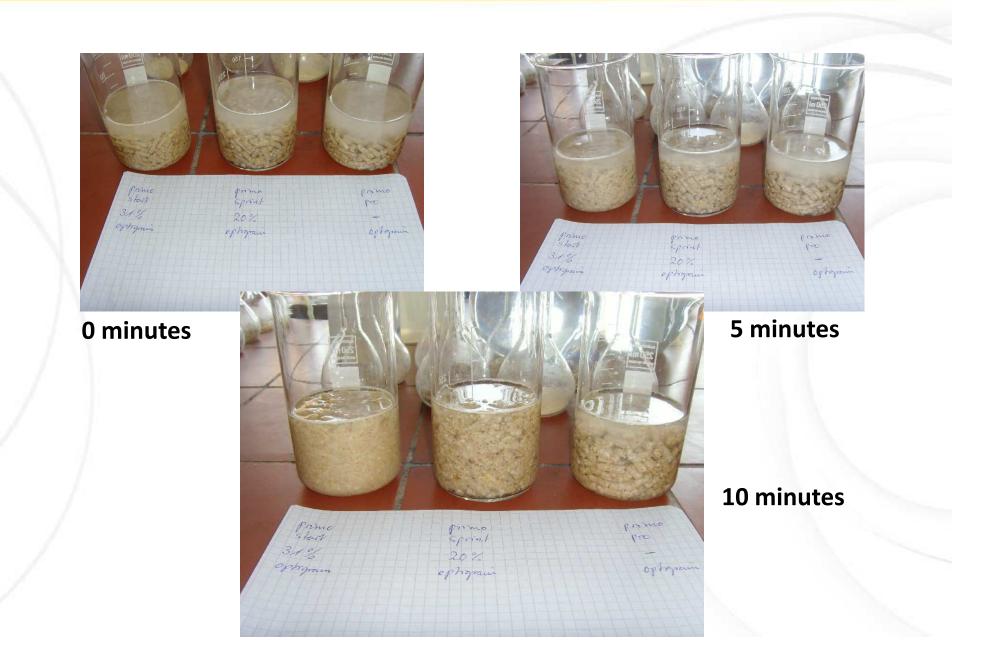
(scanning electron microscope, 1000-fold magnification)

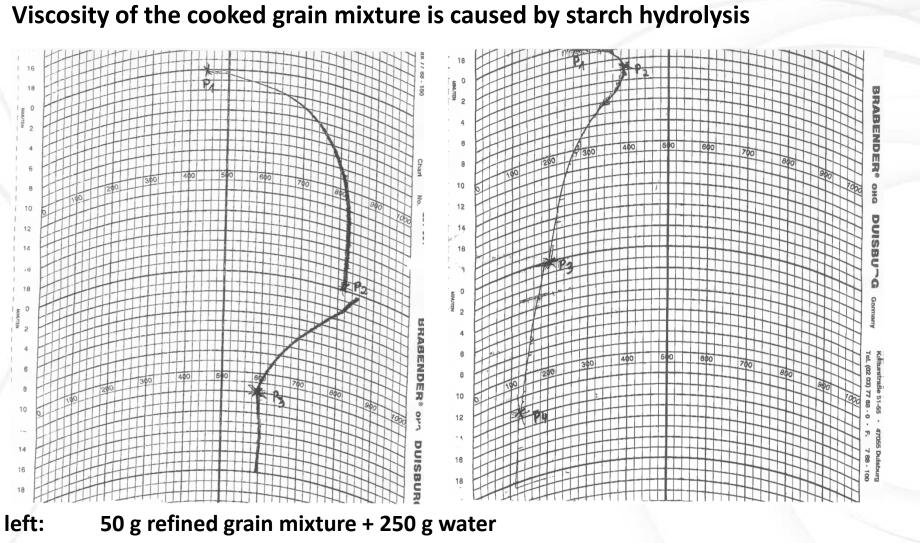
(mixture of 50 % wheat, 25 % barley und 25 % corn)

Influence on the physical properties in liquid

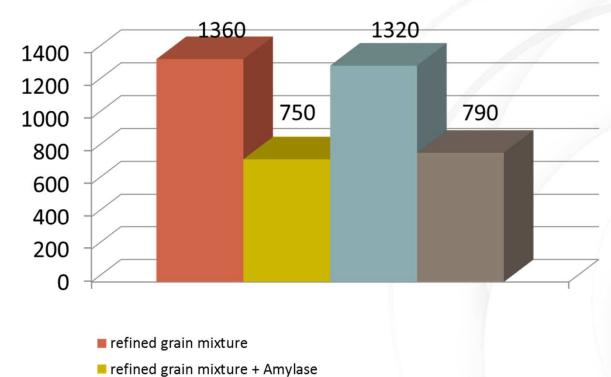
mixture of 50 % wheat, 25 % barley und 25 % corn

untreated




refined

Refined grain – influence on dissolution of pellets


right: 50 g refined grain mixture + 250 g water + 3 mg Alpha Amylase (60 g per MT) start temperature 25°C; after 20 min temperature increase up to 60°C with 3°C/min

Refined grain – influence on viscosity

Viscosity of the cooked grain mixture is caused by starch hydrolysis

Brabender Units (UB)

- refiend grain mixture + Xylanase/Glucanase
- refined grain mixture + Xylanase/Glucanase + Amylase

Viscosity in refined grain

left: 50 g refined grain mixture and 250 g water
right: 50 g refined grain mixture and 250 g water plus 3 mg Alpha Amylase (60 g per MT)

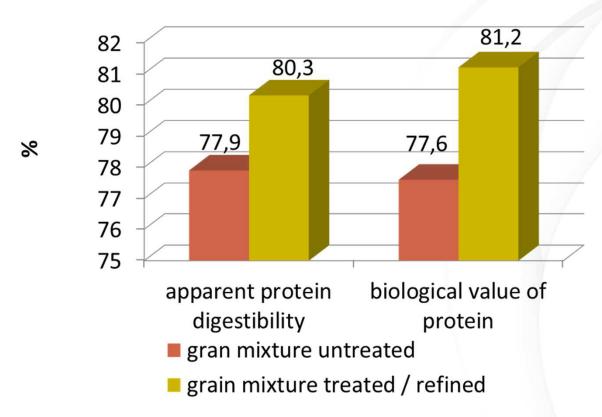
Influence of feed viscosity on physiological parameters and protein digestion in young monogastric animals

Treatment	Control	Trial	Significance
Viscosity (mPa s)	3.6	21.8	
Retention time of the solid phase in the	21.4	25.7	0.18
stomach - Recovery of marker (%)			
Protein hydrolysis in the stomach (%)	26	34	0.13
Aminopeptidase activity (U/g protein)	359	516	<0.01
ileal N digestibility (%)	75.2	79.8	0.22
faecal N digestibility (%)	80.3	84.2	0.04

Source: Fledderus et al.: Increasing diet viscosity using carboxymethylcellulose in weaned piglets stimulates protein digestibility Livestock Science 109 (2007) 89-92

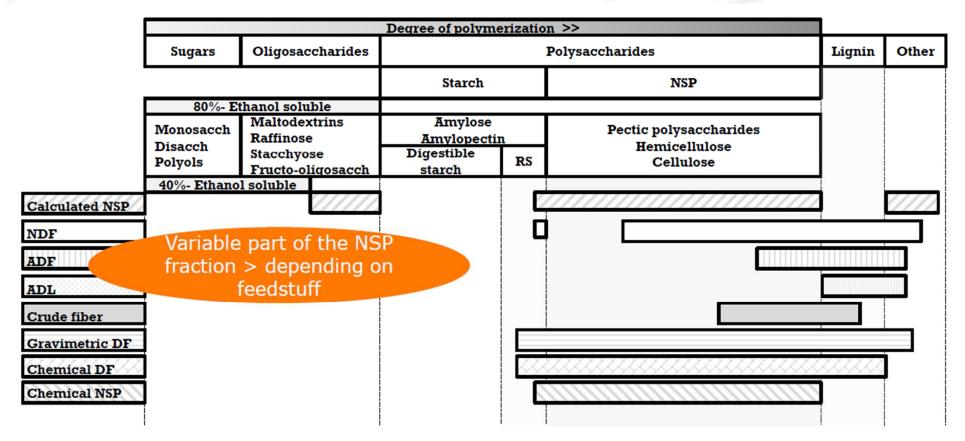
technical refinement of grain and protein value

Effect of hydrothermal refinement on in vitro protein digestibility in barley


	Nativ		opticon treated			
batch	3-hour dig% nativ	24-hour dig% nativ	3-hour dig% treated	24-hour dig% treated		
1	73,7	90,5	85,8	91,5		
2	79,5	89,1	84,9	91,1		
3	76,7	90,1	81,8	90,4		
4	77,5	90,8	84,3	90,4		
5	77,2	87,4	81,8	90,3		
6	76,0	91,3	81,0	90,0		
average	76,8	89,9	83,3	90,6		

Source: trial report Provimi b.v. (2011)

technical refinement of grain and protein value


Investigation on apparent protein digestibility and biological value of protein in a growth trial with rats (University of Rostock)

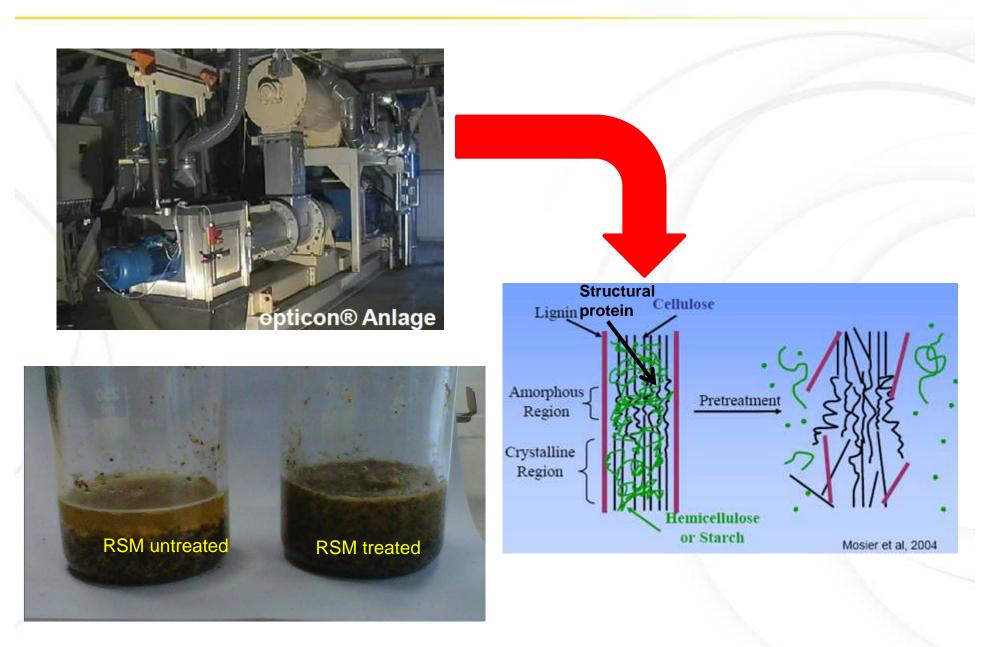
Average results from investigation with n=6 rats per group. Differences are statistically not significant.

Influence on structural carbohydrates, their fermentability and meaning for health and performance

technical refinement of fiber-rich raw materials

Raw materials in focus:

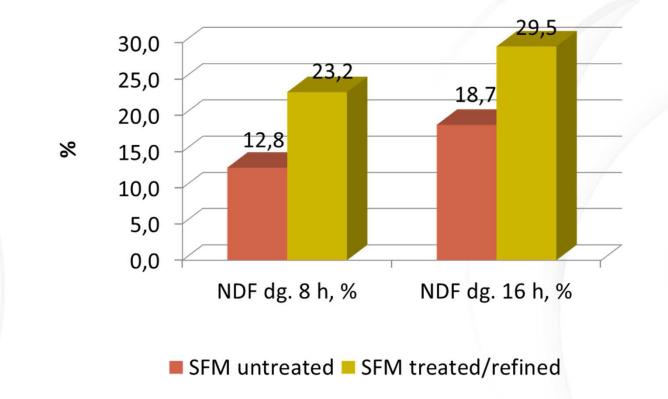
- rapeseed by-products
- sunflower by-products
- sugarbeet by-products
- hulls from soybeans, from sunflower seed, from


Target:

.....

Improving physical matters in GIT, fermentability, energy release
 → in general: improving value for application in feed recipies

technical refinement of fiber-rich raw materials



refinement of sunflower meal and NDF breakdown

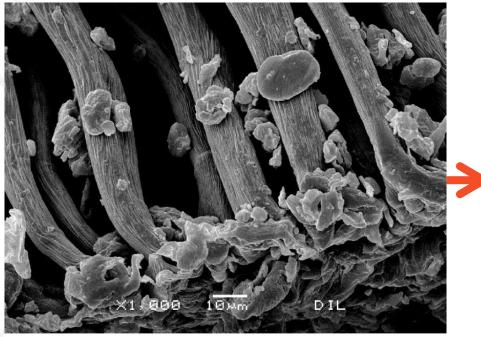
Investigation on NDF breakdown in "Daisy Ankom" (University of Udine, 2011)

Source: University of Udine (2011)

Broiler fattening with refined RSM, SFM, DDGS

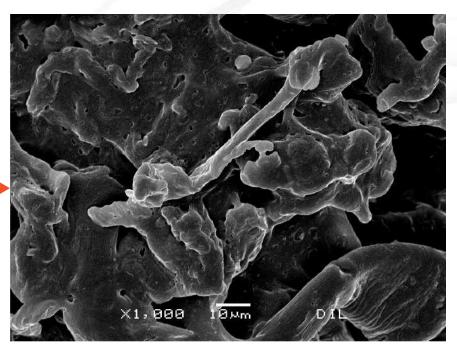
- Broiler ROSS 308 Male 9 groups with 35 animals/group floor keeping
- Fattening to 42nd day of life trial carried out May-June 2013

Group	1	2	3	4	5	6	7	8	9
SBM	++	+	+	+	+	+	-	-	-
Prodigest*	-	+	+	+	+	+	++	++	++
Feature	POSITIVE CONTROL	(RSM+SFM+ DDGS) opticon	((RSM+SFM ultrafine) +DDGS)) opticon	(SFM+ DDGS) opticon	((SFM ultrafine)+ DDGS)) opticon	(RSM+SFM+ DDGS) untreated	(RSM+SFM+ DDGS) opticon	((SFM ultrafine)+ DDGS)) opticon	((SFM ultrafine)+ DDGS)) untreated
ALW (42)	3,23	3,30	3,02	3,30	3,18	3,44	3,24	3,54	3,47
FCR (42)	1,49	1,48	1,50	1,51	1,51	1,43	1,58	1,49	1,52
p<0,001 (ALW)	ABDEFG	ABDEFGI	CE	ABDEFG	ABCDEG	ABDFGHI	ABDEFG	FHI	BFHI
Feed: CF, g/kg	32	42				44		69	69
Feed: NDF, g/kg	136	172				175		235	235
Feed: ADF, g/kg	71	93				96		150	150


*Prodigest: RSM, SFM, DDGS – different combination, particle size and processing parameters

Source: Faculty of Agronomy, Zagreb; 2014

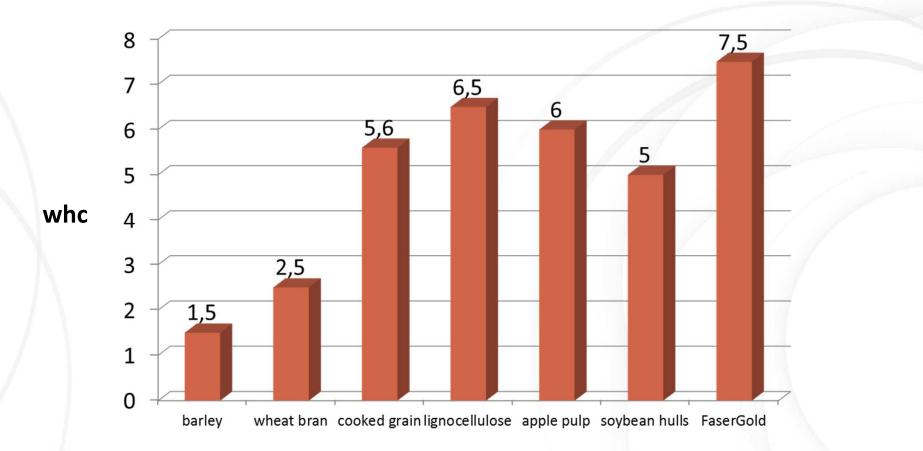
technical refinement of fiber-rich raw materials



soybean hulls, untreated

Länge des Balkens: 10 µm

soybean hulls, hydrothermally treated



Länge des Balkens: 10 µm

(scanning electron microscope, 100-fold magnification)

Whc in different untreated and refined raw materials

WHCmax. = (a+b)/c *100 = H₂O/100 g DM

- a = water incorporation in 100 g sample
- b = humidity in 100 g sample
- c = DM of 100 g sample

- Intensive technical refinement of raw materials alters their physical properties and agencies, and also the nutritive value.
- Technically refined grain supports protein digestion in the GIT and effectively reduce nutrition-induced diarrhea → "healthier GIT"
- Technical refinement of protein-rich raw materials with higher concentration of "structural carbohydrates" (fiber / NDF / ADF) alters their physical properties, improves degradability of the usually less degradable carbohydrates and enables the replacement of classically used SBM in broiler (and turkey) fattening feed.
- In future refined fiber-rich raw materials will becoming more and more important for support of "intestinal health" as well, as for animal welfare.

Thank you for your attention.

Dr. Shirish nigam EW Nutrition GmbH Shirish.nigam@ew-nutrition.com

